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 Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping 

treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active 

dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor 

blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the 

turbomaninery rotor blades vibration control, specifically for a condition with centrifugal rotation. While 

ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to 

control the structural vibration damping, very little study has been done regarding rotational effects. The 

present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze 

finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric 

circuits for engine blade operational conditions, (b) to validate the experimental test approaches with 

numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control 

using shunted piezoelectric circuits under rotation.  Study has focused on a resonant damping control using 

shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning 

and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were 

performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric 

simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests 

and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great 

potential to reduce blade vibrations under centrifugal loading. 

 

 

1. INTRODUCTION 

 The requirements for advanced aircraft engine components lead to designs which are more lightweight and efficient, 

yet more susceptible to excessive vibration, complex dynamic behavior, and uncertain durability and reliability. Structural 

vibrations also lead to thicker blade designs, increased fuel burn, increased noise, fatigue failures, reduced engine life, reduced 

safety, and increased maintenance costs. Turbomachinery rotating blades such as fan and compressor blades are subject to high 

cycle fatigue (HCF) failures as a result of high vibratory stresses. HCF accounts for fifty-six percent of major aircraft engine 

failures and ultimately limits the service life of most critical rotating components. An estimated $400M is expended annually 

for HCF related inspection and maintenance of military aircraft alone [1]. Excessive vibration of turbomachinery blades 

requires damping treatments to mitigate excessive vibration levels which cause HCF problems. Designing damping treatments 

for rotating blades in an extreme engine environment is a difficult task with various factors such as very high temperatures and 

centrifugal accelerations. Several damping methods have been investigated by NASA researchers at Glenn Research Center 

(GRC) for use in aircraft engine blades, including viscoelastic damping [2], impact damping [3, 4], plasma sprayed damping 

coatings [5], and high-damping high-temperature shape memory alloy materials [6]. Piezoelectric dampers have also been 

explored as a solution for damping treatment [7-9]. Smart piezoelectric damping technology could alter the dynamic behavior 

of a structure intelligently to achieve reduced hazardous vibration and associated dynamic stresses, increased life, and 

enhanced damage tolerance. Additionally, an optimized integrated application of this technology may provide weight and 

volume savings over conventional damping technology systems. Piezoelectric materials exhibit electromechanical coupling. 

When a piezoelectric material experiences a strain, a portion of that energy becomes dielectric energy and is stored in the 

material. In this sense, piezoelectric materials behave electrically as a capacitor. A manufactured material with a high coupling 

factor is lead zirconate titanate (PZT), and is used in many piezoelectric patches as actuators and dampers [10]. Many 

researchers have investigated piezoelectric materials in parallel with electric circuits that absorb the vibration energy of 

components. A survey of smart structures state-of-the-art can be found in a review [11]. A method to determine the effective 

damping of a shunted piezoelectric material was detailed [12]. Lesieutre [10] described the different types of shunt circuits and 

how they affect behavior.  
 For application of piezoelectric dampers to turbomachinery blades, previous work was done at ambient temperatures 

for non-rotational applications. Hilbert et al. [13] acquired a patent for shunted piezoelectric damping of blades, where 

piezoelectric patches were placed below the blade platform. Livet [14] examined negative capacitance shunted piezoelectric 

materials on beams for turbomachinery blade application. Cross and Fleeter [15] tested shunted piezoelectric damping on stator 

vanes. Piezoelectric networks have also been studied for reduction of mistuned blade vibration levels through blade coupling 

[16]. Researchers at NASA GRC also carried out the design and implementation of an experimental system that utilized stator 

vane mounted piezoelectric actuators to control fan-stator interaction noise in a simulated turbo fan engine [17]. These efforts 
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have been non-spinning application tests only, and typically used a powered shunt circuit utilizing synthetic inductors or 

negative capacitance. 

 Based on the technical challenges and requirements learned from previous turbomachinery rotor blade research, an 

attempt has been made at GRC to investigate the effectiveness of a shunted piezoelectric material for the turbomaninery rotor 

blades application, specifically for a condition with centrifugal rotation. The study has focused on a resonant damping control 

using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning 

loading. A finite element (FE) modeling effort has also been made using the ANSYS Multiphysics [18] code which can model 

piezoelectric coupled-field elements and electric circuit elements for the resistive and inductive circuits. 

 Some earlier test and analysis work conducted at GRC on the piezoelectric beam specimens is described [7]. Passive 

and active resonant damping control results showed that shunted piezoelectric damping control techniques have a great 

potential to reduce plate vibrations under centrifugal loading at room temperature. The FE results also showed a good 

correlation with experimental test results. The validated numerical models and the experimental test results obtained from the 

study allow us to extend our current effort for design and optimization of more complex turbomachinery rotor blade systems. 

 The target application for the present study is a titanium-alloy cold-side compressor or fan blade, which operates at 

temperatures up to about 600
o
F. Resonant frequencies are on the order of 100 to 10,000 Hz. The blade structure loss factor,, is 

typically on the order of 10
-3

 or less for titanium alloy blades, depending on the vibration mode, but 10
-2

 or more would be 

desirable for resonant stress reduction. This can be accomplished by incorporating a high damping material within or on the 

surface of the blade. If the damping material is placed on the blade surface, it needs to be very thin so that it does not adversely 

affect the aerodynamics. Fundamental modes (e.g. first bending or first torsion) are more easily damped with traditional 

methods such as platform dampers. While there is interest in developing new damping techniques for higher-order modes 

where resonant stresses occur near the blade tips, the focus of the current effort was on the third bending mode.  

 Centrifugal loading also causes blade stiffening, leading to changes in resonant frequency for some modes with 

rotational speed. The piezoelectric shunt circuit design will need to provide damping over the desired speed range [9]. A 

configuration of the current study was chosen to demonstrate the effectiveness of shunted piezoelectric materials for damping 

centrifugally-loaded plates.  

 While ample research has been performed on the use of a shunted piezoelectric material connected to electric circuits 

for controlling vibration damping in a stationary frame, very little study has been done to assess rotational effects in that 

subject. The present study attempts to fill this void by demonstrating the feasibility of piezoelectric damping on rotating plates 

through design, build, and testing of piezoelectric blade or blade-like test specimens in a laboratory environment. Specifically, 

the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis 

coupled with shunted piezoelectric circuits under rotation, (b) to validate the experimental test approaches by a comparison 

with numerical results or vice versa, and (c) to obtain a numerical modeling capability for vibration control using shunted 

piezoelectric circuits under rotation. 

 

2. MATERIALS AND APPROACHES 

 In this study, cantilevered plates with a piezoelectric patch connected with passive shunt circuits shown in Figure 1 

were tested and analyzed to measure vibration reduction versus a baseline undamped plate. Tests were conducted on a 

vibration exciter (shaker) at room temperature. The plate specimen of Ti-6Al-4V, 8" long x 0.75" wide x 0.078" thick, clamped 

at one end, was analyzed and tested. To simulate a fan blade type structure, the test article configuration of a simple rectangular 

plate was fabricated. 

 Figure 2 shows an actual photograph of shunt circuit connected piezoelectric plate specimen on the vibration exciter. 

The piezoelectric patch was placed at a location optimized for the third bending mode (3B) which is the target mode in this 

study. 

                      
                             Figure 1: Piezoelectric patched specimen           Figure 2: Actual photograph of piezoelectric plate                         

                                             with geometric dimensions                                 specimen on the shaker 

 

 For passive vibration damping, the piezoelectric elements are connected to a specific electrical network consisting of a 

dissipative shunt circuit [12]. One method is the tuned shunt where a circuit made with an inductor (L) and a resistor (R) in 

series is connected to the capacitance of the piezoelectric elements. Optimal damping is obtained by tuning the electrical 

resonance to the frequency of the chosen structural mode with R and L. 
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2.1 Shunted piezoelectric passive vibration control experiments 

 Non-spinning, room-temperature vibration tests were performed and analyzed for two types of circuits: resistive 

circuits (R circuit) and inductive circuits (RL circuit). The inductor can be a simple coiled wire, which is fully passive. Both 

circuit types were tested on a vibration exciter (shaker), and the resistive circuit was also tested under centrifugal loading. 

Table 1 lists the shunt circuit configurations used for analysis and testing. 

  

Table 1: Shunt Circuit Configurations [9] 

 
 

 The circuit components were chosen to maximize damping based on the Hagood and von Flotow loss factor equations 

[12], and based on shaker results. One plate was analyzed and tested on a shaker with the piezoelectric patch in the open circuit 

condition, short circuit condition, with a resistive shunt circuit, and with an inductive shunt circuit. A pair of plates was then 

tested in the NASA-GRC Dynamic Spin Facility (spin rig) in the open circuit condition and with the optimal resistor. 

 The inductors were open-core wound inductors manufactured in-house. The inductor for a 0.69 Henry (H) inductance 

is shown in Figure 3, which is quite large since the target frequency is only 700-800 Hz. This was chosen because 3
rd

 bending 

frequency below the excitation bandwidth of 1000 Hz [9]. 

                                       

 

 
Figure 3: Photograph of in-house inductor of 0.69 H                     Figure 4: Bench test setup  

   

 A cantilevered test plate was clamped to a shaker as shown in Figure 4. An accelerometer was placed on the clamp to 

measure the excitation level. A laser vibrometer was used to measure the velocity of the plate tip. An analyzer was used in the 

swept-sine mode to generate a signal to the shaker. The analyzer measured the signals to the shaker, as well as the 

accelerometer and laser vibrometer signals. The damping was calculated from the transfer function of the tip velocity to the 

clamp acceleration, as well as from the tip velocity frequency response. 

 Spin testing was performed in the Dynamic Spin Facility at NASA GRC. Figure 5 shows a photograph of the spin 

facility, and Figure 6 shows a pair of plates attached to a hub on the vertical rotor. Testing was done in a 0.01 psia vacuum at 

room temperature. The rotor was fully levitated on three conventional active magnetic bearings. An axial magnetic bearing 

supports the weight of the rotor system. The two other magnetic bearings support the rotor radially, and also provide a radial 

excitation to the shaft, transmitting vibration to the plates. At a typical excitation level, the base of the plate gets approximately 

a one-g excitation with a bandwidth of about 1000 Hz. A non-contacting stress measurement system (NSMS), with laser 

displacement probes, measures the plate tip deflections while the rotor spins. 

                                               
            Figure 5: Photograph of spin facility                     Figure 6: A pair of plates attached to rotor hub  

              

 For this test, the magnetic bearing control system provided an engine order excitation frequency – the excitation 

frequency was an integer order of the rotation speed. Two identical plate configurations were tested at the same time, and were 
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oriented directly opposite each other on the rotor. The shunt resistors were placed on the blade hub, directly inboard of the 

plate clamps. Testing was performed at speeds of zero rpm to 4000 rpm. 

 

2.2 Finite element models (FEM) for shunted piezoelectric harmonic vibration damping 

 FEM-circuit coupled piezoelectric simulation models based on electric charge balance were developed with the 

ANSYS Multiphysics code. The objectives of the modeling effort were: (a) to predict the modal frequencies and mode shapes 

of experimental test specimens under rotation, (b) to conduct harmonic forced vibration response analyses on the plate models 

coupled with shunted piezoelectric circuits for blade rotational conditions, (c) to validate the experimental test approaches 

employed with a comparison of  numerical and experimental test results vice versa, and (d) to develop a numerical modeling 

capability for vibration control using shunted piezoelectric circuits. 

 A cantilever plate with a piezoelectric patch as shown in Figure 1 was modeled with passive shunt circuits to measure 

vibration reduction versus a baseline undamped plate. The poling direction of the piezoelectric patch was in the direction of 

thickness. The titanium plate was meshed with SOLID95 which has twenty nodes with three degrees of freedom per node: 

translations in the nodal x, y, and z directions. The piezoelectric patch was meshed with SOLID226 which has twenty nodes 

with four degrees of freedom including the piezoelectric effect per node: translations in the nodal x, y, and z directions, and the 

electrical potential V. In addition, CIRCU94 elements were used to model the resistor and inductor connected to each electrode 

of the piezoelectric patch. 

 Conversion of material properties of piezoelectric materials for use in ANSYS Multiphysics was challenging because 

of differences between manufacturer-supplied data and the format required by ANSYS. This section provides a frame work of 

our FE modeling techniques for shunt circuit-fed piezoelectric vibration damping analyses under rotation. It outlines the 

prestressed modal analysis equations, piezoelectric finite element equations, general constitutive equations of piezoelectric 

materials, piezoelectric circuit element equations, and piezoelectric harmonic response analysis equations. It also covers 

converting manufacturer’s data to ANSYS format data for the stiffness matrix, dielectric constants, and piezoelectric constants. 

As the piezoelectric patch is polarized in its thickness direction but operates in the plane dimension, its input material 

properties are orthotropic and consist of stiffness, dielectric and piezoelectric matrices. The piezoelectric effect results in 

elongation and compression of the two surfaces (electrodes) of the piezoelectric plate, proportional to the electrical voltage and 

pulsates at the excitation frequency. When this piezoelectric patch is bonded to the plate, it transmits a pulsed bending moment 

into the plate, which then vibrates at the same frequency. When this frequency coincides with one of the plate natural 

frequencies, resonance occurs. A perfect adhesive bonding between actuator and plate was assumed in the model. Frequency 

response functions (FRF) were generated from a full harmonic analysis. 

 

2.2.1 Natural frequency with nonlinear rotational effects of spin softening and stress stiffening 

 To accurately calculate the resonant frequencies for spinning rotor blade, the analysis was carried out with a 

prestressed modal analysis method prior to conducting the harmonic piezoelectric-circuit analysis. Also, a spin softening model 

was used to examine whether the plate could survive at given rotational speeds. Experimental testing was performed at speeds 

from zero rpm to 4000 rpm even though the facility has the capability of spinning at up to 20,000 rpm. 

 In the model, rotational velocities are combined with the element mass matrices to form a body force load vector. As a 

small deflection analysis cannot directly account for change in geometry, the effect for large deflection was accounted for by 

an adjustment of the stiffness matrix. Thus, the large deflection effects are included in a small deflection solution. This allowed 

adjusting the stiffness of a rotating piezoelectric plate to account for dynamic mass effects. Equilibrium of the system and 

centrifugal forces on the mass using small deflection logic can be expressed as 

 

 [K]{U} = {Ω
2
} [M] {r}         (1) 

where: 

 {U} = radial displacement of the mass from the rest position 

 {r} = radial rest position of the mass with respect to the axis of rotation 

  Ω = angular velocity of rotation 

 [K] = stiffness matrix 

 [M] = mass matrix 

 

However, to account for large deflection effects, Eq. (1) must be expanded to: 

 

 [K]{U} = {Ω
2
} [M] {r + U}       (2) 

 

Rearranging terms, 

 

 ([K] - {Ω
2
} [M]) {U} = {Ω

2
} [M] {r}      (3)  

 

 Defining:  

  



5 

 

 K  = [K] - {Ω
2
} [M]        (4) 

 F  = {Ω
2
} [M] {r}     

Eq. (1) becomes simply, 

 

 K {U} = F            (5) 

 

K is the stiffness needed in a small deflection solution to account for large deflection effect, and F is the same as that 

derived from small deflection logic. Thus, the large deflection effects are included in a small deflection solution. This decrease 

in the effective stiffness matrix is called spin-softening [19]. 

 Additionally, when the strains in a material exceed more than a few percent and the rotation rates are large, the 

changing geometry due to this deformation can no longer be neglected. Analyses which include this effect are called large 

strain-large rotation analyses for stress stiffening contribution to the updated stiffnesses. Stress stiffening (also called geometric 

stiffening) is the stiffening (or weakening) of a structure due to its stress state. This stiffening effect normally is to be 

considered for thin structures with bending stiffness very small compared to axial stiffness. This stress stiffness matrix was 

added to the regular stiffness matrix in order to give total stiffness for accuracy. 

 The governing equation of motion for rotation including inertia forces and moments can be expressed in matrix form 

as: 

 [ ]{ } [ ]{ } ([ ] [ ]){U} [ ]M U C U K S F      (6) 

  

where: 

 [M] = global mass matrix = 
1

e n
eM

e
 

 e = element 1, 2, , n 

 [M
e
] = element mass matrix = [ ] [ ]T

V
N N dV  

 [N] = shape function matrix  

  ρ= element density  

 [C] = global damping matrix = 
1

e n

Ce
e

 

 n= number of elements 

 [ ]K = global stiffness of piezoelectric plate including spin softening stiffness due to centrifugal force 

  S   = stress stiffening contribution matrix due to large strain and large rotation [ ]TS G G dVV  

 [G] = matrix shape function derivatives 

 [ ] = matrix of current Cauchy (true) stresses in global coordinate 

  [ ]F  = global load vector due to rotating body force, vibration shaker excitation force, and piezoelectric voltage and 

  charge 

 

 The equation of motion for an undamped system, expressed in matrix notation is: 

 

 [ ]{ } { } {0}M U K U  where K = [ ]K +[ S ]    (7) 

Note that K  includes prestress effects due to plate spinning and stress stiffening. Eq. (7) was used for natural frequency and 

mode shape determination.  For a linear system, free vibration is harmonic of the form: 

 

     {U} = {φ}i cost ωi t        (8) 

where: 

 {φ}i = eigenvector representing the mode shape of the i
th

 natural frequency 

 ωi = i
th

 natural frequency (cycles per second) 

 t = time 

 

Thus, Eq. (7) becomes:      

 
2 { }( [ ] ) {0}M K ii        (9) 
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This equality gives the solution: 

 

 
2[ ] 0iK M         (10) 

 

 The Block Lanzos Method was used to solve this eigenvalue problem. This method uses a combination of the 

automated shift strategy and the Sturm Sequence Check strategy. The two strategies aim to reduce the number of iterations in 

solving the eigenvalue problem yet maintain good accuracy. After obtaining the frequencies and mode shapes of prestressed 

piezoelectric plates under rotational conditions, the next step was to build the coupled piezoelectric-circuit harmonic vibration 

analysis model to obtain the piezoelectric-circuited plate forced vibration responses under rotation.  

 

2.2.2 Piezoelectric finite element method 

 A finite element method for piezoelectric medium is briefly described. Piezoelectric FEM equations can be written in 

terms of nodal displacement {U} and nodal electric potential { } for each node. The displacement and potential for each 

element can be expressed, respectively, as 

 

 {U} = [Nu]
T
{Ue} 

 { } [ ] { }
T

e
N          (11) 

where 

 [Nu]
T
 = displacement shape function (transposed) 

 [ N ]
T
 = electrical potential shape function (transposed) 

 {Ue} = nodal displacement 

 { e } = nodal electric potential 

 

The mechanical strains, {S}, are related to the nodal displacements through the derivative of the shape function [Bu] 

 

 {S}= [Bu]{U}         (12) 

 

where [Bu] is the strain-displacement matrix. Similarly the electrical field {E} is related to the nodal potential as 

 

 { } [ ]{ }E B         (13) 

where [ B ] is the electric field-displacement matrix. 

 The equations of motion for a piezoelectric body can be derived from the principle of minimum potential energy by 

means of a variational functional. The resultant equations can be represented in matrix form from the assembly of all the 

individual finite element equations. The equations are written in terms of displacement {U} and electrical potential { } at the 

nodal points. Forcing functions are expressed in terms of structural loads {F} and electrical loads {Q}, resulting in the 

equilibrium equations below [20-22]. The equation of motion corresponding to the piezoelectric actuator and the plate structure 

can be assembled in a global system coordinate, which includes the degrees of freedom of the piezoelectric actuator (voltages 

and displacements) and the degrees of freedom of the plate structure (displacements) as follows: 

 

 { } { } { } { } { }
uu uu uuu

U U U FCM K K
     (14) 

 { } { } { }
T

u
U QK K  

 

This same expression can also be expressed in the matrix form: 

 0 0

0 0 0 0

uu u
uu uu

T

u

U U U F

Q

K KCM

K K

   (15) 

where 
 

[ ]

e

T

uu u u
c dVK B B

 

 
[ ]

e

T

u u
e dVK B B
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[ ]

e

T

dVK B B
 

 

e

T

uu u u
dVN NM

 

 
uuuuC K   

where 

    Ωe – finite element domain 

     ρ – piezoelectric density 

 
uuK - mechanical stiffness matrix  Bu , B - derivatives of FEM shape functions 

 
uK  - piezoelectric coupling matrix  [c] – elastic coefficients 

 K  - dielectric stiffness matrix   [e] – piezoelectric coefficients 

 
uuM  - mass matrix    [ε] – dielectric coefficients 

 
uuC

 - mechanical damping matrix   β – damping coefficient 

 

2.2.2.1 Constitutive relationship of piezoelectric materials 
 The basic constitutive relationship of piezoelectric materials is outlined below. A piezoelectric model requires 

permittivity (or dielectric constants), the piezoelectric matrix, and the elastic coefficient matrix to be specified as material 

properties. The constitutive relationship usually given by manufacturers or published reports is in the following form: 

 

 { } [ ]{ } [ ]{ }ES S T d E         (16) 

 { } [ ] { } [ ]{ }t TD d T E         (17) 

 

ANSYS requires data in the following form: 

 

 { } [ ]{ } [ ]{ }ET C S e E         (18) 

 { } [ ] { } [ ]{ }
t S

D e S E         (19) 

where 

 {T} = stress vector (six components x, y, z, xy, yz, xz) 

 {S} = strain vector (six components x, y, z, xy, yz, xz) 

 {D} = electric displacement vector (three components x, y, z) 

 {E} = electric field vector (three components x, y, z) 

 E

c
= stiffness matrix evaluated at constant electric field, i.e. short circuit 

 [e] = piezoelectric matrix relating stress/electric field 

 [e]
t
 = piezoelectric matrix relating stress/electric field (transposed) 

  S  = dielectric matrix evaluated at constant strains, i.e. mechanically clamped 

           [d] = piezoelectric matrix relating strain/electric field 

                [ ]td = piezoelectric matrix relating strain/electric field (transposed) 

              [ ]T  =dielectric matrix evaluated at constant stress, i.e. mechanically free 

 

 In order to convert the manufacturer’s data presented in the form of Eqs. (16) & (17) to ANSYS notation (Eqs. (18) & 

(19)), Eq. (16) needs to be based on stress rather than strain. Eq. (16) can be rearranged as: 

 

 
1 1

{ } { } [ ]{ }E ET S S S d E        (20) 

 

Since Eq. (17) relates electric displacement to strain rather than stress, Eq. (20) can then be plugged back into Eq. (17) to yield: 

 

 
1 1

{ } [ ] { } [ ] [ ] [ ] { }t E T t ED d S S d S d E      (21) 

Upon comparison of Eqs. (20) & (21) with Eqs. (18) & (19), one can obtain the relationship between manufacturer-supplied 

data and ANSYS-required values: 
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1

E E
C S          (22) 

 
1

[ ] [ ]
S T Etd ds         (23) 

 
1

[ ] [ ]Ee dS         (24)   

These equations form the basis of the conversion routines for converting manufacturer’s data to ANSYS data for stiffness 

matrices, dielectric constants, and piezoelectric constants. Note that the manufacturer’s data has mechanical vectors in the form 

{x, y, z, yz, xz, xy} whereas ANSYS’s mechanical vectors are in the form {x, y, z, xy, yz, xz}. 

 

2.2.2.2 Permittivity matrix (Dielectric constants) 

 Dielectric constants represent the diagonal components 11, 22, and 33 respectively of the permittivity matrix S .
 

(The superscript "s" indicates that the constants are evaluated at constant strain.) The permittivity matrix evaluated at constant 

strain is input into ANSYS. Typically, manufacturers’ data has permittivity evaluated at constant stress, so conversion is 

necessary. 

 After evaluating Eq. (23), the permittivity matrix has only diagonal terms: 

 

 
11 11

1111

3333

0 0 0 0

0 0

S S

S
S S

o

SS

K

K

K

      (25) 

where 11
11

S
S

K
o

  is relative permittivity. 

 Although there is a choice of inputting permittivity as an absolute value 33
T or relative value 33

T
K , the relative value is 

recommended. Relative values were used in the present work. 

 

2.2.2.3 Piezoelectric matrix [e] 

 Usually, manufacturers’ data gives [d], which relates mechanical strain to electric field. However, ANSYS requires 

[e], relating mechanical stress to electric field, so conversion is required. Note from Eq. (24), a relationship between [e] and [d] 

is established as follows where assuming polarization in the 3-axis (z-direction) and symmetry in the unpolarized directions ( 

d32 = d31 and d24 = d15 ). 

 

 [d]
t
 = 15

15

31 31 33

0 0 0 0 0

0 0 0 0 0

0 0 0

d

d

d d d

      (26) 

  

This matrix can be used with [S
E
]

-1
 = [C

E
] to evaluate [e] which will become, 

 

              15

15

31 31 33

0 0 0 0 0

0 0 0 0 0

0 0 0

[ ]
t

e
e e

e e e

       (27) 

 

This matrix relates the electric field to stress. 

 

2.2.2.4 Stiffness Matrix [C] 

 The stiffness matrix is a symmetric matrix that specifies the stiffness coefficients:  

 

  

11

21 22

31 32 33

61 62 63 66

41 42 43 46 44

51 52 53 56 54 55

[ ]
E

C

c
c c
c c c
c c c c
c c c c c
c c c c c c

      (28)  

 Appropriate numerical values of the matrix coefficients were input for modeling the plate specimens illustrated in 

Section 2.2.5. 
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2.2.3 Piezoelectric circuit elements 

 The piezoelectric circuit element in ANSYS, CIRCU94, simulates basic linear electric circuit components that can be 

directly connected to the piezoelectric finite element domain. It is suitable for the simulation of circuit-fed piezoelectric 

dampers for vibration control under the influence of harmonic (sinusoidally varying) forces, currents, displacements, and 

voltages. CIRCU94 elements were used to model resistor (R) and inductor (L) elements connected to each electrode of the 

piezoelectric patch. Any number of combinations of loadings is permitted and they need not be in phase, but they must be at 

the same frequency. The finite element equations for the resistor, inductor, capacitor and current source were derived using the 

nodal analysis method [23, 24]. To be compatible with the system of piezoelectric finite element equations, the nodal analysis 

method was adapted to maintain the charge balance at each node: 

 [ ]{ } { }K V Q          (29) 

where  

 [K] = stiffness (capacitance) matrix 

 {V} = vector of nodal voltages (to be determined) 

 {Q} = load vector of nodal charges 

 

 In a harmonic analysis, the stiffness matrix becomes 

 

 
1

2

1 1 0

1 1 0

V
C

V

        (30) 

 

for capacitor, 

  

 
1

2

2

1 1 01

1 1 0

V
j

R V
      (31)       

  

for a resistor, 

 

 
1

2

2

1 1 01

1 1 0

V

L V

             (32) 

 

and for a inductor 

 

where 

              j = imaginary unit, 2
1j  

             ω = driving frequency  

             V1 and V2 are the shunt voltage as degrees of freedom at the two nodes for each R and L elements 

 

Equations 34-36 can be readily added to Eq. (15) for harmonic analysis [23]. 

 

2.2.4 Piezoelectric harmonic response analysis under harmonic excitation 

 The harmonic response analysis solves time-dependent equations of motion shown in Eq. (15) for structures 

undergoing steady-state vibration. All points in the structure are moving at the same known frequency, however, not 

necessarily in phase. It is known that the presence of damping causes phase shifts. Therefore, the displacements {U(t)} and 

electrical potential { (t)} may be defined as: 

 {U(t)} = {U}e
-jωt+ψ

   { (t)} = { }e
-jωt+ψ    

(33) 

where 

 ω = driving frequency 

 ψ = phase shift 

 t = time 

 

Force and charge are expressed as 

 

 {F(t)} = {F} e
-jωt+ψ 

              {Q(t)} = {Q} e
-jωt+ψ      

(34) 
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Note that the {Q(t)} is related to the current I by 

 

 {Q(t)} = (1/jω)(I)e
-jωt+ψ

        (35) 

 

Substituting Eqs. (33)-(35) in the piezoelectric constitutive Eq. (15) yields 

 
KK

KMCjK
T

U

UUUUUUU

2

ˆ

Û
 =  

ˆ

1

F

I
j

    (36) 

where the superscript “^” represents the complex matrices. 

 Note that peak harmonic response occurs at forcing frequencies that match the natural frequencies of the piezoelectric 

plates.  

 

2.2.5 Geometric data of piezoelectric plate specimens 

 A titanium plate test specimen with a rectangular cross-section was studied. The dimensions and the physical 

properties are given in Table 2. A piezoelectric patch was bonded onto the upper face of the plate. The piezoelectric properties 

of PZT-5 [25] are given in Table 3. The poling direction for the piezoelectric patch is in the direction of thickness, and the 

mechanical boundary condition of the structure is clamped. On each interface between piezoelectric and the plate, the electrical 

potential is forced to zero. Since the target mode in this study was the third bending mode, a piezoelectric patch was placed at a 

location of high strain energy for this mode to provide optimal effectiveness of the patch for the structural damping.  A single 

Midé PZT-5A qp10w15 piezoelectric patch was bonded to one side of the plate. The patch was centered at 2.3 inches from the 

tip, in a high modal strain area for the third bending (3B) mode. The patch was 1.5 inches long, 2.0 inches wide, and 0.015 

inches thick. The piezoelectric material itself within the patch has dimensions of 1.31 inches long, 1.81 inches wide, and 0.010 

inches thick. The geometric sketches of the model are shown in Figure 7. 

 

 
 Figure 7: (a) Geometric sketch of active part of rectangular piezoelectric plate configuration for FEM, (b) Plot of  

                              modal deformation, and (c) Equivalent modal strain of 3B mode at zero rotation speed 

 

Table 2: Ti 6Al-4V plate characteristics 

Length 8 inch  

Width 3.2 inch  

Thickness 0.077 inch 

Young’s modulus  1.52E+07 psi 

Poisson’s ratio 0.3 

Density 0.16 lb/in
3
 

 

 

Table 3: Piezoelectric properties (εo=8.85x10
−12

 farad/m, electric permittivity of air) [25] 
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3. RESULTS AND DISCUSSIONS 

 Piezoelectric finite element analyses and experimental tests were performed to determine the relative effectiveness of 

fully passive shunt circuit damping techniques on rotating piezoelectric plate specimens. The test specimen configuration 

consists of a piezoelectric patch attached to a vibrating plate at a location of high stress. An electrical circuit was attached to the 

patch, which can dissipate the electrical energy. 

 

3.1 Experimental Test Results 

 This section describes the experimental test results obtained from non-spinning bench tests and spin rig tests, 

respectively.    

3.1.1 Non-Spinning Bench Test Results 

 Figure 8 shows some shaker test data on the same rectangular plate. The velocity of the plate tip was measured. The 

third bending loss factor,  was 0.00156(i.e. critical damping ratio ζ = 7.8x10
-4

) with an open circuit (no circuit connected to 

the patch).  

3B Tip Displacement and Shaker Clamp Acceleration

Rectangular Plate with one qp10w patch at 5.7" - Open Circuit

Loss Factor  = 0.0015
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Figure 8: Shaker data on rectangular plate            Figure 9: Transfer functions – plate tip velocity to clamp acceleration (in/s/g) 

 

 A plate was tested on the shaker as shown in Figure 2. The bench testing of the rectangular plates was performed to 

determine the optimal inductor size for the third bending resonance mode. As predicted, there was optimal damping at a 

resistance of approximately 4 kΩ. A resistance of 4.12 kΩ was used in spin test. Vibration levels were reduced for the 3B 

resonance levels by as much as 90 percent with a properly tuned inductive shunt circuit. Figure 9 shows the resonant peak 

reduction with shunt circuits. With the 0.69 H inductance and a resistance of 2 kΩ or less, the desired damping can be achieved 

in a non-spinning test. 

 

3.1.2 Spin Rig Test Results 

 A rectangular titanium plate finite element model spinning up to 4000 rpm was modeled to see the stress state at the 

plate hub against the materials strength. The maximum von Mises equivalent stress value at 4000 rpm was approximately 14 

ksi at the corners of the plate hub area as shown in Figure 10.  An acceptable margin of the safety was calculated for spinning 

up to 4000 rpm. 

 

    
           Figure 10: Equivalent stress value under 4000 rpm             Figure 11: Comparison of third bending (3B) resonance                   

                                                                                                                           frequencies with FEM predictions and test data   

 

 Before performing spinning vibration tests, the plates were run to a maximum speed of 4000 rpm for one minute in the 

Dynamic Spin Facility. They were then removed from the rig and inspected to check the structural integrity of the plates, 

piezoelectric material, wiring, and bonding materials. In addition, the piezoelectric capacitance was checked before and after 
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vibration spin testing. This test proved that spin testing could be performed using these flat plate test articles. Figure 11 shows 

both the predicted and experimental resonance frequencies as a function of rotor speed for the 3B-O-C (3B open circuit) 

configuration. Each experimental data point shown represents a resonance occurring when the engine order excitation 

frequency matched the third bending mode resonance frequency. The correlation between modeling and experiment is good. 
The frequencies also increase with rotor speeds.  

 Spin tests up to 3800 rpm were performed on both open circuit and resistive shunt circuit plates. Spin tests at 3800 

rpm using a resistive shunt (R=4120 Ω) reduced vibrations by approximately 20 percent versus the open circuit mode.  Figure 

12 shows the damping increase due to the resistive shunt circuit. An adequate 3B response with the inductive shunt circuit 

piezoelectric plate specimens did not appear to be attainable using the current spin rig test setup. More spin tests will be 

required to demonstrate the resistive and inductive circuit effectiveness under centrifugal load. 

 
Figure 12: Spin test data – loss factor (damping) increased using resistive shunt circuit 

 

3.2 FE Analysis Results and Comparisons to Experimental Test Results   

 This section describes the electrical shunt circuit-fed piezoelectric finite element results and their comparisons to those 

of the experimental tests. 

3.2.1 Non-Spinning Results 

 An ANSYS finite element-electrical circuit coupled piezoelectric vibration simulation model was developed using 

electric circuit components. To perform a coupled piezoelectric-electrical circuit analysis, the piezoelectric circuit element, 

CIRCU94, was used to model the resistor and inductor.  

 For modeling the circuit coupled piezoelectric titanium plate structure, the electric circuits were directly connected to 

the 3-D piezoelectric coupled-field 20-node brick elements, SOLID226, through a set of common nodes or by coupling 

separate nodes. The titanium plate was meshed with 20-node brick elements, SOLID95. The location of the circuit with respect 

to the distributed piezoelectric domain is arbitrary and does not affect the analysis results. The intent was to create a resonant 

circuit by shunting the inherent capacitance (C) of the piezoelectric with a resistor and inductor in series forming a RLC circuit 

to control the 3B mode of the piezoelectric plate. This patch was fully covered by electrode poled through its thickness and 

actuated lengthwise so that it was operating in the transverse mode. In addition to the source load, the only other load is a zero 

voltage specification at the ground nodes. 

 The experimentally measured shaker excitation shown in Figure 8 was approximated in the piezoelectric finite 

element analysis with a constant base excitation of 0.6g to simulate actual shaker excitation. The tip displacements obtained 

from the finite element models were compared with the experimental test results.  Three numerical results of zero rotational 

speed cases were compared to those of the experimental test data as shown in Figure 12. 

 A constant loss factor,  of 0.00156 (i.e. critical damping ratio ζ = 7.8x10
-4

) experimentally determined with an open 

circuit for the 3B resonance mode, was used for inherent structural modal damping of the 3B mode. There is a different 

inherent structural damping ratio for each resonance mode. This pure structural damping value was maintained for other circuit 

cases studied. The frequency response function (FRF) obtained from the FE model for open circuit case was compared with 

that of the experimental test. The agreement between finite element model and experimental test was excellent as shown in 

Figure 12 (top two curves). Based on this inherent structural modal damping agreement for the open circuit case, other circuit 

cases were numerically analyzed for structural damping plus damping induced by the shunted piezoelectric circuits. Those 

results are shown in the same Figure 12. Clearly it can be seen that vibration levels were reduced by as much as 90 percent 

with a properly tuned inductive shunt circuited piezoelectric patch.  

 The result of an open-circuit case displays excellent agreement between modeling and test. While numerical and 

experimental test results show a good tendency overall, a larger difference in the results was observed with resistive and 

inductive circuit cases comparing to the open circuit case. The tendency of overestimated damping values obtained by the FEM 

may possibly be a result of uncertainty in piezoelectric material properties used in the model. Equally, many sources of the 

uncertainties involved in the experimental test results such as adhesive bonding, wiring elements, and also inconsistent shaker 
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excitations as shown in Figure 8, possibly may be part of this difference as well. Since all the piezoelectric material properties 

necessary for FE modeling were not available from the piezoelectric materials manufacturer for the experimental tests, some 

approximations were necessary for inputting the piezoelectric material properties for FE modeling. Hence, differences in 

experimental test and FE model possibly comes from: (1) discrepancy in piezoelectric properties and clamp boundary 

conditions; (2) imperfections in bonding; (3) modal damping measurements variation;  (4) possible experimental wiring signal 

effects; (5) inconsistent shaker excitations; (6) and imperfection in the connection of piezoelectric patch and electric circuitry in 

the experimental tests. 
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     Figure 12: Shaker bench test results: harmonic responses of FEM vs. experimental test (R– resistance Ω, L – inductance H); 

                      Note: units of abscissa (Hz) for resonant frequency and ordinate (in/sec/g) for plate tip velocity 

 

3.2.2 Spinning Results 

 In order to predict dynamic characteristics of the rotating coupled piezoelectric-circuit plate in the spin rig, finite 

element modal analyses were performed. Vibration amplitudes of the rotating piezoelectric plate were examined to prevent 

excess vibration. The prestressed modal frequencies of open-circuit piezoelectric plate, including spin softening and stress 

stiffening effects, were obtained numerically as a function of rotational speed. The Campbell diagram in Figure 13 shows a 

prediction of the rotational speeds at which fundamental plate modes will be excited. Resonance excitation will occur if the 

excitation is set at a multiple of the rotational speed and the rotor is spinning at a speed where this engine order line crosses the 

resonance curve. For the speed range shown, only multiples of engine order (E) higher than 10E will excite the 3B mode. 

 

 
Figure 13: Campbell diagram for open-circuit piezoelectric plate 

 

 One of the objectives of the finite element modeling was to predict frequency response for comparison with the 

frequency response functions (FRF) obtained by experimental spin tests.  However, FRFs (transfer functions) from the 

experimental spin tests were not available since a non-contacting stress measurement system (NSMS) with laser displacement 

probes was used to measure the plate tip displacement while the rotor spins (Duffy et al, 2009). The transfer functions by the 

experimental spin tests will be obtained in the future using either a slip ring or a wireless inductive power transfer device being 

developed at GRC. Hence, Figures 14 and 15 show the results obtained only from the numerical spin test simulations. 
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 The FE harmonic response analysis was performed for a piezoelectric-circuit plate excited by a harmonic vibration of 

0.6g acceleration at different rotational speeds.  Figure 14 shows the frequency response functions numerically obtained for 

variable rotational speeds with open circuit case. The open-circuit piezoelectric plate having a 3B patch was spun to 5000 rpm. 

The results show that the plate tip velocities increase with rotational speed. Damping, however, decreases with increasing rotor 

speed. Centrifugal loading not only affects the resonance frequencies, but also affects the damping levels, typically causing 

reduced damping with increased rotor speed. Frequency shifts are also observed as the rotational speeds increase. These 

frequency shifts are mainly attributed to a stiffness change as a result of spin softening and stress stiffening effects. 
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                            Figure 14: Frequency response function (transfer function) for open circuit vs. rotational speeds;  

                                              Note: zero rpm response function curve is hidden behind the curve of 1000 rpm. 

 

 The effectiveness of a shunted resistive circuit versus speed is shown with Figure 15. These results were obtained for 

a 3B case. The result shows that a resistance equal to 4120 Ω is the most effective for reducing vibration amplitude at 

approximately 1000 rpm.  The resistance value can be changed to obtain similar high damping at a higher rotor speed, if 

desired. 
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Figure 15: Effectiveness of shunted resistive circuit vs. rotational speeds 

 

 FE simulation was also conducted for the inductive circuit piezoelectric plate. A circuit made with an inductor (L) and 

a resistor (R) in series connected to the capacitance of piezoelectric patch was modeled for the inductive shunt circuited plates 

under rotation. Experimental spin rig tests with an inductive shunt circuited piezoelectric plate were performed for controlling 

3B. However, an adequate response from the current spin rig test setup did not appear to be attainable. Instead, the 2
nd

 bending 

(2B) response with a 3B patch was attainable from the spin testing using the current spin test setup. Therefore, FE modal and 

frequency response analyses for the inductive circuit piezoelectric plate were performed to predict the response functions of the 

2B with a 3B patch under rotations. In spite of that, the FRF (transfer function) of 2B from the experimental spin tests was not 

available for a comparison with those obtained numerically since a NSMS with laser displacement probes can measure the 

plate tip deflection only while the rotor spins. Figure 16 shows the numerical results of the 2
nd

 bending (2B) harmonic 
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responses with a resistance value equal to 1500 Ω and an inductance value equal to 4 H. A comparison with FE results 

indicates that vibration reduction percentage is practically independent of rotor speed with an inductive shunt circuit. It shows 

that the RL inductive shunted circuit can still reduce the vibration as much as 90 percent in contrast to the open circuit. Figures 

17 and 18 show the specific transfer functions for zero rotation and 1000 rpm for a comparison against open circuit responses, 

respectively. Both cases clearly illustrate a significant reduction in the peak amplitude when inductive shunt circuit is used. The 

inductive shunt circuits will enable the damping to remain high over the operating speed range.  
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Figure 16: Numerical results of 2B harmonic responses with a patch at 3B modal location 
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Figure 17: Comparison of 2B transfer function for    Figure 18: Comparison of 2B transfer function for open 

                  open circuit vs. shunted inductive circuit with 1000rpm     circuit vs. shunted circuit with zero rotation 

 

 Based on the results shown in the current paper with a rotating piezoelectric plate, a study is extended for the real 

piezoelectric blade specimens under rotation. 

 

4. SUMMARY 

 A numerical and experimental study using the electrical circuit-fed piezoelectric patched metal plate under rotation 

was performed to develop and demonstrate a shunted piezoelectric vibration damping technique to reduce vibrations in 

turbomachinery fan or compressor blades.  

 Spin and shaker tests were conducted on passively-shunted piezoelectric-damped rectangular plates. Third bending 

resonance amplitude levels were greatly reduced with a properly tuned inductive and resistive shunt circuit in a non-spinning 

test.  

 Finite element harmonic response analysis models were developed and utilized along with the experimental tests to 

validate the test data or vice versa. The result of an open-circuit case displayed excellent agreement between modeling and 
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experimental test. While numerical and experimental test results compare favorably, a larger difference in the results was 

observed with resistive and inductive circuit cases when compared to an open-circuit case. The tendency of overestimated 

damping values obtained by the shunt circuit piezoelectric finite element models may possibly be a result of uncertainties in the 

piezoelectric material properties and approximations of the boundary conditions used in the model. Equally, many other 

sources of uncertainties involved in the experimental tests that are not included in the analysis, such as  imperfections in 

bonding, modal damping measurements variation, possible experimental wiring signal effects, inconsistent shaker excitations, 

and  also wiring work involved in connection of piezoelectric patch and electric circuitry, possibly contribute to difference as 

well. Additional work is required to examine effects of uncertainties mentioned.  

 An effective resistive circuit for the third bending mode vibration reduction was identified for plate specimens under 

rotation. A resistive shunt circuit reduced vibrations by approximately 20 percent in experimental spin tests and 65 percent in 

numerical simulations. Again, a tendency of overestimated damping values with the finite element results for a resistive shunt 

circuit case under rotation may be a result of uncertainty in piezoelectric material properties used in the models and other 

uncertainties involved in measurements in the experimental tests.   

 The finite element analysis results indicate that vibration reduction percentages by an inductive shunt circuit do not 

vary with rotational speed. Nevertheless, it shows that the inductive shunted circuit under rotation can still reduce the vibration 

as much as 90 percent against the open circuit. Whereas this behavior should be verified when the inductive circuit test data 

from the spin rig tests in progress are available, a significant reduction in the peak amplitude is predicted by FEM. The 

inductive shunt circuits will enable the damping to remain high over the operating speed range.  
 The present numerical and experimental test results also indicate that resistive and inductive shunt piezoelectrics have 

the ability to reduce plate vibrations significantly under rotation. A resistive shunt alone may not be sufficient to achieve the 

desired damping goal. The tuned inductive circuit with a wound inductor yielded very high damping in shaker tests and 

numerical simulations, and will be tested and validated in the spin rig in the near future. The addition of an inductor to form a 

tuned inductive circuit for rotation should increase damping considerably. 

 A new numerical tool developed for vibration control using shunted resistive and inductive piezoelectric circuits for 

plate specimen under rotation allows for the prediction of modal frequencies and mode shapes of the plate specimens under 

rotation, simulation of the harmonic forced response vibration analysis for blade operational conditions, and validation of 

experiment results. 

 Based on the numerical and experimental results shown, electrical circuit-fed finite element piezoelectric modeling 

techniques and spin rig experiments should facilitate the study of more challenging and realistic tests of piezoelectric damped 

turbomachinery blades. 

 

5. FUTURE WORK 

 The modeling techniques explained herein will be extended to real blade specimens. These specimens will be spin-

tested and analyzed in a similar fashion. Continuous vibration data will be available as the experimental test setup will include 

a slip ring. Test blades will be composite and metal, and piezoelectric patches will be surface-mounted and embedded. The use 

of synthetic inductive shunt circuits may also be explored. These circuits can be smaller in size, but will require power in the 

rotating frame. The capability to transfer power to the test rotor exists using a wireless inductive power transfer device. Newer 

state-of-the-art high temperature piezoelectric patches may also be explored. 
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